一. 什么是拷贝构造函数
首先对于普通类型的对象来说,它们之间的复制是很简单的,例如:
- int a = 100;
- int b = a;
- #include <iostream>
- using namespace std;
- class CExample {
- private:
- int a;
- public:
- //构造函数
- CExample(int b)
- { a = b;}
- //一般函数
- void Show ()
- {
- cout<<a<<endl;
- }
- };
- int main()
- {
- CExample A(100);
- CExample B = A; //注意这里的对象初始化要调用拷贝构造函数,而非赋值
- B.Show ();
- return 0;
- }
运行程序,屏幕输出100。从以上代码的运行结果可以看出,系统为对象 B 分配了内存并完成了与对象 A 的复制过程。就类对象而言,相同类型的类对象是通过拷贝构造函数来完成整个复制过程的。
下面举例说明拷贝构造函数的工作过程。
- #include <iostream>
- using namespace std;
- class CExample {
- private:
- int a;
- public:
- //构造函数
- CExample(int b)
- { a = b;}
- //拷贝构造函数
- CExample(const CExample& C)
- {
- a = C.a;
- }
- //一般函数
- void Show ()
- {
- cout<<a<<endl;
- }
- };
- int main()
- {
- CExample A(100);
- CExample B = A; // CExample B(A); 也是一样的
- B.Show ();
- return 0;
- }
二. 拷贝构造函数的调用时机
在C++中,下面三种对象需要调用拷贝构造函数!1. 对象以值传递的方式传入函数参数
- class CExample
- {
- private:
- int a;
- public:
- //构造函数
- CExample(int b)
- {
- a = b;
- cout<<"creat: "<<a<<endl;
- }
- //拷贝构造
- CExample(const CExample& C)
- {
- a = C.a;
- cout<<"copy"<<endl;
- }
- //析构函数
- ~CExample()
- {
- cout<< "delete: "<<a<<endl;
- }
- void Show ()
- {
- cout<<a<<endl;
- }
- };
- //全局函数,传入的是对象
- void g_Fun(CExample C)
- {
- cout<<"test"<<endl;
- }
- int main()
- {
- CExample test(1);
- //传入对象
- g_Fun(test);
- return 0;
- }
2. 对象以值传递的方式从函数返回
- class CExample
- {
- private:
- int a;
- public:
- //构造函数
- CExample(int b)
- {
- a = b;
- }
- //拷贝构造
- CExample(const CExample& C)
- {
- a = C.a;
- cout<<"copy"<<endl;
- }
- void Show ()
- {
- cout<<a<<endl;
- }
- };
- //全局函数
- CExample g_Fun()
- {
- CExample temp(0);
- return temp;
- }
- int main()
- {
- g_Fun();
- return 0;
- }
3. 对象需要通过另外一个对象进行初始化;
- CExample A(100);
- CExample B = A;
- // CExample B(A);
后两句都会调用拷贝构造函数。
三. 浅拷贝和深拷贝
1. 默认拷贝构造函数
很多时候在我们都不知道拷贝构造函数的情况下,传递对象给函数参数或者函数返回对象都能很好的进行,这是因为编译器会给我们自动产生一个拷贝构造函数,这就是“默认拷贝构造函数”,这个构造函数很简单,仅仅使用“老对象”的数据成员的值对“新对象”的数据成员一一进行赋值,它一般具有以下形式:
- Rect::Rect(const Rect& r)
- {
- width = r.width;
- height = r.height;
- }
- class Rect
- {
- public:
- Rect() // 构造函数,计数器加1
- {
- count++;
- }
- ~Rect() // 析构函数,计数器减1
- {
- count--;
- }
- static int getCount() // 返回计数器的值
- {
- return count;
- }
- private:
- int width;
- int height;
- static int count; // 一静态成员做为计数器
- };
- int Rect::count = 0; // 初始化计数器
- int main()
- {
- Rect rect1;
- cout<<"The count of Rect: "<<Rect::getCount()<<endl;
- Rect rect2(rect1); // 使用rect1复制rect2,此时应该有两个对象
- cout<<"The count of Rect: "<<Rect::getCount()<<endl;
- return 0;
- }
这段代码对前面的类,加入了一个静态成员,目的是进行计数。在主函数中,首先创建对象rect1,输出此时的对象个数,然后使用rect1复制出对象rect2,再输出此时的对象个数,按照理解,此时应该有两个对象存在,但实际程序运行时,输出的都是1,反应出只有1个对象。此外,在销毁对象时,由于会调用销毁两个对象,类的析构函数会调用两次,此时的计数器将变为负数。
说白了,就是拷贝构造函数没有处理静态数据成员。
出现这些问题最根本就在于在复制对象时,计数器没有递增,我们重新编写拷贝构造函数,如下:
- class Rect
- {
- public:
- Rect() // 构造函数,计数器加1
- {
- count++;
- }
- Rect(const Rect& r) // 拷贝构造函数
- {
- width = r.width;
- height = r.height;
- count++; // 计数器加1
- }
- ~Rect() // 析构函数,计数器减1
- {
- count--;
- }
- static int getCount() // 返回计数器的值
- {
- return count;
- }
- private:
- int width;
- int height;
- static int count; // 一静态成员做为计数器
- };
2. 浅拷贝
所谓浅拷贝,指的是在对象复制时,只对对象中的数据成员进行简单的赋值,默认拷贝构造函数执行的也是浅拷贝。大多情况下“浅拷贝”已经能很好地工作了,但是一旦对象存在了动态成员,那么浅拷贝就会出问题了,让我们考虑如下一段代码:
- class Rect
- {
- public:
- Rect() // 构造函数,p指向堆中分配的一空间
- {
- p = new int(100);
- }
- ~Rect() // 析构函数,释放动态分配的空间
- {
- if(p != NULL)
- {
- delete p;
- }
- }
- private:
- int width;
- int height;
- int *p; // 一指针成员
- };
- int main()
- {
- Rect rect1;
- Rect rect2(rect1); // 复制对象
- return 0;
- }
在这段代码运行结束之前,会出现一个运行错误。原因就在于在进行对象复制时,对于动态分配的内容没有进行正确的操作。我们来分析一下:
在运行定义rect1对象后,由于在构造函数中有一个动态分配的语句,因此执行后的内存情况大致如下:
在使用rect1复制rect2时,由于执行的是浅拷贝,只是将成员的值进行赋值,这时 rect1.p= rect2.p,也即这两个指针指向了堆里的同一个空间,如下图所示:
当然,这不是我们所期望的结果,在销毁对象时,两个对象的析构函数将对同一个内存空间释放两次,这就是错误出现的原因。我们需要的不是两个p有相同的值,而是两个p指向的空间有相同的值,解决办法就是使用“深拷贝”。
3. 深拷贝
在“深拷贝”的情况下,对于对象中动态成员,就不能仅仅简单地赋值了,而应该重新动态分配空间,如上面的例子就应该按照如下的方式进行处理:
- class Rect
- {
- public:
- Rect() // 构造函数,p指向堆中分配的一空间
- {
- p = new int(100);
- }
- Rect(const Rect& r)
- {
- width = r.width;
- height = r.height;
- p = new int; // 为新对象重新动态分配空间
- *p = *(r.p);
- }
- ~Rect() // 析构函数,释放动态分配的空间
- {
- if(p != NULL)
- {
- delete p;
- }
- }
- private:
- int width;
- int height;
- int *p; // 一指针成员
- };
此时,在完成对象的复制后,内存的一个大致情况如下:
此时rect1的p和rect2的p各自指向一段内存空间,但它们指向的空间具有相同的内容,这就是所谓的“深拷贝”。
3. 防止默认拷贝发生
通过对对象复制的分析,我们发现对象的复制大多在进行“值传递”时发生,这里有一个小技巧可以防止按值传递——声明一个私有拷贝构造函数。甚至不必去定义这个拷贝构造函数,这样因为拷贝构造函数是私有的,如果用户试图按值传递或函数返回该类对象,将得到一个编译错误,从而可以避免按值传递或返回对象。
- // 防止按值传递
- class CExample
- {
- private:
- int a;
- public:
- //构造函数
- CExample(int b)
- {
- a = b;
- cout<<"creat: "<<a<<endl;
- }
- private:
- //拷贝构造,只是声明
- CExample(const CExample& C);
- public:
- ~CExample()
- {
- cout<< "delete: "<<a<<endl;
- }
- void Show ()
- {
- cout<<a<<endl;
- }
- };
- //全局函数
- void g_Fun(CExample C)
- {
- cout<<"test"<<endl;
- }
- int main()
- {
- CExample test(1);
- //g_Fun(test); 按值传递将出错
- return 0;
- }
四. 拷贝构造函数的几个细节
1. 拷贝构造函数里能调用private成员变量吗?解答:这个问题是在网上见的,当时一下子有点晕。其时从名子我们就知道拷贝构造函数其时就是一个特殊的构造函数,操作的还是自己类的成员变量,所以不受private的限制。
2. 以下函数哪个是拷贝构造函数,为什么?
- X::X(const X&);
- X::X(X);
- X::X(X&, int a=1);
- X::X(X&, int a=1, int b=2);
- X::X(const X&); //是拷贝构造函数
- X::X(X&, int=1); //是拷贝构造函数
- X::X(X&, int a=1, int b=2); //当然也是拷贝构造函数
3. 一个类中可以存在多于一个的拷贝构造函数吗?解答:类中可以存在超过一个拷贝构造函数。
- class X {
- public:
- X(const X&); // const 的拷贝构造
- X(X&); // 非const的拷贝构造
- };
- class X {
- public:
- X();
- X(X&);
- };
- const X cx;
- X x = cx; // error